Approaches to improve automation for security

Sara Matzner
Program Manager,
Cyber Information Assurance & Decision Support
(CIADS)

Information Systems Laboratory
Applied Research Laboratories
The University of Texas at Austin
matzner@arlut.utexas.edu, 512-835-3176

CIADS domain of expertise

- Information assurance
 - Telecommunications and computer networks
- Expert systems for intrusion detection
- Vulnerability assessment
- Network modeling and simulation

Problem Statement

- Networks are vulnerable.
 - External and internal sources of threat
- Intrusion detection systems are imperfect.
 - High false alarm rates
- Threat assessment is manpower-intensive.
 - Overwhelming quantity of data

Goals

Applied Research Laboratories, The University of Texas at Austin

- Support the analyst using state of the art technologies
- Provide decision support through data management
 - Data reduction, correlation, summarization
- Provide both post-analysis and real time response capabilities
- Bridge policy and compliance
 - Dynamic policy updates
- Automate detection tasks where possible

Copyright © 2001, The University of Texas at Austin, Applied Research Laboratories. Reproduction and redistribution prohibited without prior express consent.

Strategy for near-term

Applied Research Laboratories, The University of Texas at Austin

Funding needed:

- Extension of current technological approaches
- Techniques for automation are coming to maturity now

Techniques for automation

- Machine learning
 - Developed through data mining of historical databases
- Artificial intelligence
 - Autonomous agents, genetic algorithms, neural networks
- Payoff: automation and extension of human pattern recognition capabilities

Data Mining

- Knowledge discovery in databases using:
 - Clustering
 - Classification
 - Association Rule Mining
 - High-Dimensional Visualization
- Benefits:
 - Discovery of attack sequences
 - Characterization of normal conditions in order to recognize abnormal behavior
 - Represents current state-of-the-art

Artificial Intelligence

- Autonomous Agents
 - Actively gather data as needed
 - Confirmatory Agents: Used to fill in gaps in data-mining-based hypotheses concerning intrusions
 - Discovery Agents: Used to find anomalous situations

Artificial Intelligence

- Autonomous Agents
 - **Example uses:**
 - Vulnerability analysis: "automated Red Team"
 - Coupled with genetic algorithms to randomize attack sequences
 - Data retrieval: an agent to penetrate hostile and friendly systems
 - Countermeasure deployment: a means to compromise a target system

- Knowledge Engineering & Data Mining
 - Capture what you know (but don't know you know)
 - Discovery of new relations in existing data
 - Represents current technology
 - Currently performed offline (post analysis)
 - Remain fairly human intensive

Automated Data Retrieval

Applied Research Laboratories, The University of Texas at Austin

Copyright © 2001, The University of Texas at Austin, Applied Research Laboratories. Reproduction and redistribution prohibited without prior express consent.

Changing environment

- Computing environment is becoming more distributed and changing dynamically
 - Data, processing and knowledge will be distributed throughout the network
 - Distributed knowledge will allow for recognizing correlations across broad regions of the network.
 - Data analysis and filtering will occur at lowerlevels
 - Caveat Information will not be available for higher-level synthesis
 - Network topology will change in a shortened time scale

- Greater analysis load on the human
- Requires more synthesis of information and more automation at all levels